OFFICE OF NAVAL RESEARCH Contract NOO014-76-C-0826 Task No. NR 056-625 TECHNICAL REPORT NO. 78-07 Reactions of Triply-bonded Dimetal Compounds. Reversible Addition of Carbon Monoxide to a Hexakis(alkoxy) dimolybdenum Compound. A Molecule with a Carbonyl-bridged Metal-to-Metal Double Bond. by M. H. Chisholm, 1 F. A. Cotton, 2 M. W. Extine² and R. L. Kelly¹ Prepared for Publication in Journal of the American Chemical Society Departments of Chemistry ¹Princeton University, Princeton, New Jersey 08540 and ²Texas A & M University College Station, Texas 77843 January 4, 1978 Reproduction in whole or in part is permitted for any purpose of the United States Government Approved for Public Release: Distribution Unlimited | T. REPORT NUMBER | ORT DOCUMENTATION | PAGE | READ INSTRUCTION | |--|--|---|---| | | | | 1 RECIPIENT'S CATALOG NUM | | | Reactions of Triply | s-honded Nimetal | (9) | | Compounds. Re | versible Addition of
lkoxy)dimolybdenum | f Carbon Monoxide | Technical Report a PERIO | | Molecule with Double Bond. | a Carbonyl-bridged | | TR-78-67 | | M.H./Chisholm,
R.L./Kelly | F.A.Cotton, M.W./E | ktine / | NØØ14-76-C-Ø826
NR 056-625 | | Department of | | • | 10. PROGRAM ELEMENT, PROJ
AREA & WORK UNIT NUMBE | | Princeton Univ
Princeton, N. | 회사 회의 하면 생각 내용 경우가 하고 하면 되었다면서 그렇게 하는 바로 하는 사람이 되었다면 하는 사람이 되었다. | | 11) 4 Jan 78/ | | Office of Nava | | | January 4, 1978 | | Department of | the Navy | | 13. NUMBER OF PAGES 2 | | 14. MONITORING AGEN | ICY NAME & ADDRESS(II dillon | ent from Controlling Office) | 18. SECURITY CLASS. (of this s | | | | | 15a. DECLASSIFICATION/DOWN | | 16. DISTRIBUTION STA | TEMENT (of this Report) | | | | Approved for | public release; dist | ribution unlimite | ed | | | | | DDC | | 17. DISTRIBUTION STA | TEMENT (of the abetract enters | d in Block 20, if different fro | JAN 19 1978 | | | • | | Discoleil A G | | | NOTES | | F | | 18. SUPPLEMENTARY | | | | | 18. SUPPLEMENTARY | | | | | | | | | | 19. KEY WORDS (Contin | us on reverse side if necessary
1 Triple and Double | and identify by block number,
Bonds, Molybdenut | n, Alkoxides, | | 19. KEY WORDS (Centin
Metal-to-Metal
Carbon Monoxid | Triple and Double | Bonds, Molybdenus | a, Alkoxides, | | 19. KEY WORDS (Centing Metal-to-Metal Carbon Monoxide M | Triple and Double de. or on reverse side if necessary a alkoxides, Mo ₂ (OR) to bon monoxide at room | Bonds, Molybdenus nd identity by block number) , which contain m m temperature and | , Alkoxides, | | 19. KEY WORDS (Centing Metal-to-Metal-Carbon Monoxide Carbon M | Triple and Double de. To on reverse side if necessary alkoxides, Mo (OR) to on monoxide at room een established for Mo (OBu | Bonds, Molybdenus ad identify by block mumber) , which contain m m temperature and R=Bu: + CO = Mo. (OBu | etal-to-metal triple 1 Atmos. A reversib | | 19. KEY WORDS (Centime Metal-to-Metal-to-Metal-to-Metal-Carbon Monoxide Metal-to-Metal Carbon Monoxide Metal-to-Metal-to | Triple and Double de. To on reverse side if necessary alkoxides, Mo (OR) to on monoxide at room een established for Mo (OBu | Bonds, Molybdenus ad identify by block mumber) , which contain m m temperature and R=Bu: + CO = Mo. (OBu | etal-to-metal triple | | 19. KEY WORDS (Centime Metal-to-Metal-to-Metal-to-Metal-Carbon Monoxide Metal-to-Metal Carbon Monoxide Metal-to-Metal-to | Triple and Double de. To on reverse side if necessary alkoxides, Mo (OR) to on monoxide at room een established for Mo (OBu | Bonds, Molybdenus | etal-to-metal triple 1 Atmos. A reversib | SECURITY CLASSIFICATION OF THIS PAGE (When Bate Entered) is 2.489(1)A. In the presence of an excess of CO, Mo(CO) is ultimately formed along with other as yet, uncharacterized molybdenum containing compounds. 5/N 0102- LF- 014- 6601 Unclassified SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) Reactions of Triply-bonded Dimetal Compounds. Reversible Addition of Carbon Monoxide to a Hexakis(alkoxy)dimolybdenum Compound. A Molecule with a Carbonyl-bridged Metal-to-Metal Double Bond. Sir: We report here our initial observations on a series of most remarkable reactions involving carbon monoxide and Mo₂(OR)₆ compounds, which contain unbridged metal-to-metal triple bonds. 1 Alkane solutions of Mo₂(OR)₆ compounds where R = Ma₃C, Me₂CH and Me₃CCH₂, rapidly absorb carbon monoxide at room temperature to give dark solutions.² Upon exposure to two equivalents of CO, crystalline compounds have been obtained merely by cooling the alkane solutions to <u>ca.</u> -10°C. Black crystalline compounds of empirical formula Mo(OR)₃CO have been obtained for R = Me₂CH and Me₃CCH₂ and a preliminary X-ray investigation has shown that the isopropoxide is tetranuclear, Mo₄(OPr¹)₁₂(CO)₄. The IR spectrum of the latter compound shows four well-resolved and sharp bands of approximately equal intensity assignable to coordinated carbonyl ligands: 1957, 1882, 1837 and 1819 cm⁻¹. When R = Me₃C, a dark purple crystalline compound, Mo₂(OBu¹)₆CO, I, was obtained which showed only one IR band, at 1670 cm⁻¹, assignable to a carbonyl group. All the new carbonyl compounds are thermally labile. I readily loses CO on heating in vacuo and Mo₂(OBu^t)₆ is recovered. Carbon monoxide is also lost in solution under a nitrogen purge or under vacuum. This establishes the reversibility of reaction 1 below. $$Mo_2(OBu^t)_6 + CO \stackrel{?}{+} Mo_2(OBu^t)_6 CO$$ (1) The black crystalline compounds, $Mo_4(OR)_{12}(CO)_4$, where $R = Me_2CH$ and Me_3CCH_2 , yield $Mo(CO)_6$ at $50^{\circ}C$, 10^{-2} Torr and $Mo_2(OR)_8$ compounds at $80-100^{\circ}C$, 10^{-2} Torr. Other non-volatile products are as yet uncharacterized in these thermal decomposition reactions. Upon exposure to an excess of CO (1 Atmos) Mo₂(OR)₆ compounds react further. For example, after exposing a hexane solution of Mo₂(OBu^t)₆ to an excess of CO (1 atmos) for 12 hr the solvent was stripped, leaving a black powdery residue which showed the following IR bands assignable to carbonyl groups: 2022m, 1985vs, four overlapping bands at ca. 1930, all strong, 1830w, 1690vw, 1670w and 1630w cm⁻¹. The band at 1985 cm⁻¹ is assignable to Mo(CO)₆ and even at room temperature, 1 atmos, this compound slowly sublimes out of the black residue. Thus it appears that formation of I represents merely the first step in a chain of reactions which leads to Mo(CO)₆ amongst other as yet uncharacterized products. We proceeded directly toward a full structural characterization of the novel carbonyl compound, I. Crystals of I consist of discrete dinuclear molecules with the structure shown in Fig. 1. Here we omit, for the sake of clarity, the $(CH_3)_3C$ groups. Each molecule possesses a crystallographically imposed mirror plane containing 01, C1, O2 and O3 and bisecting the Mo-Mo bond. The virtual symmetry of the molecule is C_{2v} . The coordination polyhedron about each metal atom is a distorted square pyramid with the Mo to carbonyl carbon bond at the apex. We believe the Mo-Mo bond has a formal bond order of 2. The molecule is diamagnetic and the electron counting for each molybdenum atom may be conducted as follows: the neutral Mo atom has 6 electrons, each terminal RO group contributes 1 as does the bridging CO group, and the pair of bridging RO groups contribute 3 electrons to each metal atom. Thus, before metal-metal bond formation is considered, each metal atom has 12 electrons. To account readily for diamagnetism, an Mo-Mo bond of even order should be present. With a distance of 2.489(1)Å, the only reasonable conclusion is a bond order of 2. Metal to metal bonds of orders 1, 3 and 4 are, of course, very numerous and well-known, but not many double bonds have been observed to date. For molybdenum there have not previously been any unambiguous cases except for that in Mo₂(OPr¹)₈, where the Mo-Mo distance, 2.523(1)A, is very similar to the one found here. It is noteworthy that in the isopropoxide also the metal atoms have formal 14-electron configurations, but the coordination polyhedron is a trigonal bipyramid. In conclusion we emphasize the following: - 1) This work provides the first synthesis and structural characterization of a compound in which a carbonyl ligand bridges a metal-to-metal double bond, as well as only the second unambiguous example of an Mo = Mo bond. - 2) To our knowledge the reversible reaction 1 has but one anology, namely, the recently reported reversible CO insertion into a Pd-Pd single bond. where X = C1, Br and dpm = Ph2PCH2PPh2. 3) The formation of Mo(CO)₆ under the extremely mild conditions reported here is quite remarkable. Indeed, the reaction between Mo₂(OR)₆ compounds and CO may prove synthetically useful for the synthesis of labelled compounds Mo(*CO)₆. <u>Supplementary Material.</u> A Table (1 page) of atomic positional and thermal parameters. Ordering information is given on any current masthead page. <u>Acknowledgements</u>. Support from the Office of Naval Research at Princeton and The Robert A. Welch Foundation at Texas A&M University is gratefully acknowledged. Malcolm H, Chisholm*8 and Raymond L. Kelly Department of Chemistry Princeton University Princeton, N. J. 08540 and F. Albert Cotton and Michael W. Extine Department of Chemistry Texas A&M University College Station, Texas 77843 #### REFERENCES - M. H. Chisholm, F. A. Cotton, C. A. Murillo and W. W. Reichert, <u>Inorg. Chem.</u>, <u>16</u>, 1801 (1977). - 2. Additions were made using standard vacuum line techniques. - 3. For Mo(OCHMe,) CO, Anal calcd (found): C, 39.88(39.88); H, 7.03(7.06). - 4. Crystal data for Mo. (0-t-Bu) (CO): a = 17.827(3), b = 9.335(2), c = 19.447(4)A, α = β = γ = 90.00°, V = 3236(1)A³, Z = 4. Space group C mcα1 (No. 36). Unique data (1532 reflections) having 0.0°<20 (MoKα) \$50.0° were collected at 22°C using MoKα radiation (α = 0.710730A) and the 1237 reflections having I>3σ(I) were retained as observed. The structure was solved using standard heavy atom methods and refined to convergence utilizing anisotropic thermal parameters for molybdenum and oxygen atoms and isotropic thermal parameters for the carbon atoms. Hydrogen atoms were not located. Final residuals are R = 0.067 and R = 0.085; the esd of an observation of unit weight was 1.958. - 5. F. A. Cotton, J. Less-Common Metals, 54, 3 (1977). - M. H. Chisholm, R. L. Kelly, W. W. Reichert, F. A. Cotton and M. W. Extine, J. Amer. Chem. Soc., 100, xxx (1978). - A. L. Balch, L. S. Benner, H. Hope and M. M. Olmstadd, J. Amer. Chem. Soc., 99, 5503 (1977). - 8. Alfred P. Sloan Fellow, 1976-78. Figure 1. A view of the coordination goemetry of I, Mo₂(OBu^t)₆(CO), showing the main internuclear distances. Each atom is represented by its ellipsoid of thermal vibration, scaled to enclose 40% of the electron density. The tertiary butyl groups are omitted for clarity. POSITIONAL AND THERMAL PARAMETERS AND THEIR ESTIMATED STANDARD DEVIATIONS. | | | | | | | The state of s | | | | |------|-----------------------|-------------------------|-------------|------------|------------|--|-----------------------------------|------------|-------------| | ATOM | ×1 | > ! | NI | 8(1.1) | 4 B(2.2) | 8(3.3) | 9(1.2) | B(1,3) | 8(2.3) | | 2 | -9.07006(5) | -0.07006(5) -0.26838(8) | -0.2560(8) | 0.00236(3) | 0.00649(8) | 0.00163(2) | 8.88163(2) -8.88889(9) -8.8882(1) | -8.0002(1) | -0.8661(3) | | 5 | 8.0000(8) | -0.557(1) | -0.2891(8) | 9.0044(6) | 0.007(1) | 0.0034(4) | 0.000(0) | 0.0000(0) | 0.0018(15) | | 20 | 0.0000(0) | -0.187(1) | -0.1731(6) | 0.0030(5) | 0.010(2) | 0.0014(3) | (0)000'0 | 0.0000(0) | -0.6012(12) | | 83 | 0.0000(8) | -0.121(1) | -0.2971(7) | 6.0028(4) | 0.006(1) | 0.0021(3) | 0.000(8) | 0.00000 | 0.0011(12) | | 3 | -0.1357(6) | -0.279(1) | -0.3260(5) | 0.0034(3) | 0.010(1) | 0.0017(2) | -0.002(1) | -0.0017(5) | 0.0009(9) | | 8 | -6.1337(5) | -0.359(1) | -9.1867(5) | 0.0027(3) | 0.011(1) | 0.0023(3) | -6.881(1) | 0.0012(5) | -0.0003(10) | | 5 | 0.0000(0) -0.432(2) | -0.432(2) | -0.2738(9) | 2.8(3) | | | | | | | 23 | 0.6066(0) -0.149(2) | -0.149(2) | -0.1040(12) | 4.16.40 | | | | | | | 8 | 0.0000(0) -0.279(3) | -0.279(3) | -8.8586(16) | 6.2(6) | | | | | | | 3 | -0.0693(10) -0.058(3) | -0.058(3) | -0.0875(12) | 6.8(5) | | | | | | | S | 0.8666(8) | 0.034(2) | -6.3847(11) | 3.9(4) | | | | •= | | | 93 | 0.0000(0) | 0.066(4) | -0.3785(20) | 9.1(10) | | | | | | | 23 | 0.0684(11) | 0.094(2) | -0.2720(10) | 6.3(5) | | | | | | | 8 | 0.1554(10) -0.323(2) | -0.323(2) | -0.3940(9) | 5.8(3) | | | , | | | | 63 | -0.1227(13) -0.467(3) | -0.467(3) | -0.4065(12) | 7.8(5) | | | | | | | C10 | -0.2431(13) -0.338(3) | -0.338(3) | -0.3919(13) | 7.5(5) | | | | | | | === | -0.1360(21) -0.202(4) | -0.202(4) | -0.4422(19) | 18.8(8) | | | | | | | C12 | 0.1689(8) -0.483(2) | -0.483(2) | -0.1577(8) | 4.1(3) | | | | | | | C13 | -0.2171(10) -0.434(2) | -0.434(2) | -0.6991(11) | 5.9(4) | | | | | | | C14 | -0.2193(13) -0.541(3) | -0.541(3) | -0.2175(12) | 8.8(6) | | | | | | | 513 | -0.1129(11) -0.593(2) | -0.593(2) | -0.1396(9) | 5.5(4) | | | | | | | | | | | | | | | | | EXP[-(B(1,1)*H*H + B(2,2)*K*K + B(3,3)*L*L + B(1,2)*H*K + B(1,3)*H*L + B(2,3)*K*L)]. THE FORM OF THE ANISOTROPIC THERMAL PARAMETER IS: | No. Copies | No. Copies | |--|--| | Office of Navel Research
Arlington, Virginia 22217
Attn: Code 472 2 | Defense Documentation Center Building 5, Cameron Station Alexandria, Virginia 22314 12 | | Office of Naval Research
Arlington, Virginia 22217
Attn: Code 1021P 1 6 | U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, N.C. 27709
Attn: CRD-AA-IP 1 | | ONR Branch Office
536 S. Clark Street
Chicago, Illipois 60605
Attn: Dr. Jerry Smith | Naval Ocean Systems Center San Diego, California 92152 Attn: Mr. Joe McCartney 1 | | ONR Branch Office
715 Broadway
New York, New York 10003
Attn: Scientific Dept. 1 | Naval Weapons Center China Lake, California 93555 Attn: Head, Chemistry Division 1 | | ONR Branch Office
1030 East Green Street
Pasadena, California 91105
Attn: Dr. R. J. Marcus 1 | Maval Civil Engineering Laboratory Port Hueneme, California 93041 Attn: Mr. W. S. Haynes | | ONR Branch Office San Francisco Area Office One Hallidie Plaza San Francisco, Calif. 94102 Attn: Dr. Phillip A. Miller | Professor O. Heinz
Department of Physics & Chemistry
Naval Postgraduate School
Monterey, California 93940 | | ONR Branch Office
495 Summer Street
Boston, Massachusetts 02210
Attn: Dr. L. H. Peebles 1 | Dr. A. L. Slafkosky Scientific Advisor Commandant of the Marine Corps (Code RD-1) Washington, D.C. 20380 | | Director, Naval Research Laboratory
Washington, D.C. 20390
Attn: Code 6100 | Office of Naval Research Arlington, Virginia 22217 Attn: Dr. Richard S. Miller 1 | | The Asst. Secretary of the Navy (R&D) Department of the Navy Room 4E736, Pentagon Washington, D.C. 20350 | | Commander, Naval Air Systems Command Department of the Navy Washington, D.C. 20360 Attn: Code 310C (H. Rosenwasser) 1 | lo. | Copies | No. Copt | 2 | |---|--------|---|---------| | Dr. M. A. El-Sayed
University of California
Department of Chemistry
Los Angeles, California 90024 | 1 | Dr. G. B. Schuster
University of Illinois
Chemistry Department
Urbana, Illinois 61801 | 1 | | Dr. M. W. Windsor
Washington State University
Department of Chemistry
Pullmen, Washington 99163 | 1 | Dr. E. M. Eyring
University of Utah
Department of Chemistry
Salt Lake_City, Utah | 1 | | Dr. E. R. Bernstein
Colorado State University
Department of Chemistry
Fort Collins, Colorado 80521 | 1 | Dr. A. Adamson
University of Southern California
Department of Chemistry
Los Angeles, California 90007 | 1 | | Dr. C. A. Heller
Naval Weapons Center
Code 6059
China Lake, California 93555 | 1 | Dr. M. S. Wrighton
Massachusetts Institute of Technolog
Department of Chemistry
Cambridge, Massachusetts 02139 | ay
1 | | Dr. M. H. Chisnoim Princeton University Department of Chemistry Princeton, New Jersey 08540 | 1 | Dr. M. Rauhut
American Cyanamid Company
Chemical Research Division
Bound Brook, New Jersey 08805 | 1 | | Dr. J. R. MacDonald
Naval Research Laboratory
Chemistry Division
Code 6110
Washington, D.C. 20375 | 1 | | | #### No. Copies | Dr. D. A. Vroom IRT P.O. Box 80817 San Diego, California 92138 | 1 | |--|---| | Dr. G. A. Somorjai
University of California
Department of Chemistry
Berkeley, California 94720 | 1 | | Dr. L. N. Jarvis
Surface Chemistry Division
4555 Overlook Avenue, S.W.
Washington, Q.C. 20375 | 1 | | Or. W. M. Risen, Jr.
Brown University
Department of Chemistry
Providence, Rhode Island 02912 | | | Br. H. H. Chrisholm Princeton University Chemistry Department Princeton, New Jersey 00540 | L | | Dr. J. B. Hudson
Rensselaer Polytechnic Institute
Materials Division
Troy, New York 12181 | 1 | | Dr. John T. Yates
National Bureau of Standards
Department of Commerce
Surface Chemistry Section
Washington, D.C. 20234 | 1 | | Dr. Theodore E. Madey Department of Commerce National Bureau of Standards Surface Chemistry Section Washington, D.C. 20234 | 1 | | Dr. J. M. White
University of Texas
Department of Chemistry
Austin, Texas 78712 | 1 | Or. R. W. Vaughan California Institute of Technology Division of Chemistry & Chemical Engineering Pasadena, California 91125 Dr. Keith H. Johnson Massachusetts Institute of Technology Department of Metallurgy and Materials Science Cambridge, Massachusetts 02139 Dr. M. S. Wrighton Massachusetts Institute of Technology Department of Chemistry Cambridge, Massachusetts 02139 Dr. J. E. Demuth IBM Corp. Thomas J. Watson Research Center P.O. Box 218 Yorktown Heights, New York 10598 Dr. C. P. Flynn University of Illinois Department of Physics Urbana, Illinois 61801 Dr. W. Kohn University of California (San Diego) Department of Physics La Jolla, California 92037 Dr. R. L. Park Director, Center of Materials Research University of Maryland College Park, Maryland 20742 | . Mo. Capies | No. Co | |---|--| | Dr. W. T. Peria
Electrical Engineering Department
University of Hinnesota
Hinneapolis, Hinnesota 55455 | Dr. Leonard Wharton James Franck Institute Department of Chemistry 5640 Ellis Avenue Chicago, Illinois 60637 | | Dr. Narkis Tzoar
City University of New York
Convent Avenue at 138th Street
New York, New York 10031 | Dr. M. G. Lagally Department of Metallurgical and Mining Engineering University of Wisconsin | | Dr. Chia-wei Woo
Northwestern University
Department of Physics
Evanston, I71 inois 60201 1 | Medison, Wisconsin 53706 Dr. Robert Gomer James Franck Institute Department of Chemistry | | Dr. D. G. Mattis
Yeshiva University
Physics Department
Amsterdam Avenue & 185th Street | 5640 Ellis Avenue
Chicago, Illinois 60637
Dr. R. F. Wallis | | New York, New York 10033 1 Dr. Robert M. Hexter University of Minnesota | University of California (Irvine) Department of Physics Irvine, California 92664 | | Department of Chemistry
Minneapolis, Minnesota 55455. 1 | | | No. Copies | ·No. Copies | |--|---| | Dr. R. M. Grimes University of Virginia Department of Chemistry Charlottesville, Virginia 22901 1 | Dr. W. Hatfield
University of North Carolina
Department of Chemistry
Chapel Hill, North Carolina 27514 | | Dr. M. Tsutsui
Texas AAM University
Department of Chemistry
College Station, Texas 77843 1 | Dr. D. Seyferth Massachusetts Institute of Technology Department of Chemistry Cambridge, Massachusetts 02139 | | Dr. G. Quicksall Georgetown University Department of Chemistry 37th & O Streets Washington, D.C. 20007 | Br. H. H. Chrisholm -Princeton University -Sepertment of Chamistry -Princeton, New Jersey 08940 | | Dr. M. F. Hearthorne
University of California
Department of Chemistry
Los Angeles, California 90024 7 | Or. B. Foxman Brandeis University Department of Chemistry Waltham, Massachusetts 02154 | | Or. D. B. Brown
University of Vermont
Department of Chamistry
Burlington, Vermont 05401 1 | Dr. T. Marks Northwestern University Department of Chumistry Evanston, Illinois 60201 1 | | Or. W. B. Fox
Navel Research Laboratory
Chemistry Division
Code 6730 | Dr. G. Geoffrey Pennsylvania State University Department of Chemistry University Park, Pennsylvania 16802 | | Weshington, D.C. 20375 1 Dr. J. Adcock University of Tennessee Department of Chemistry Knoxyille, Tennessee 37916 1 | Or. J. Zuckerman University of Oklahoma Department of Chemistry Norman, Oklahoma 73019 | | Or. A. Cowley University of Texas Department of Chemistry Austin, Texas 78712 1 | |